x^2-9=(x-3)(5x+2)

Simple and best practice solution for x^2-9=(x-3)(5x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-9=(x-3)(5x+2) equation:



x^2-9=(x-3)(5x+2)
We move all terms to the left:
x^2-9-((x-3)(5x+2))=0
We multiply parentheses ..
x^2-((+5x^2+2x-15x-6))-9=0
We calculate terms in parentheses: -((+5x^2+2x-15x-6)), so:
(+5x^2+2x-15x-6)
We get rid of parentheses
5x^2+2x-15x-6
We add all the numbers together, and all the variables
5x^2-13x-6
Back to the equation:
-(5x^2-13x-6)
We get rid of parentheses
x^2-5x^2+13x+6-9=0
We add all the numbers together, and all the variables
-4x^2+13x-3=0
a = -4; b = 13; c = -3;
Δ = b2-4ac
Δ = 132-4·(-4)·(-3)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-11}{2*-4}=\frac{-24}{-8} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+11}{2*-4}=\frac{-2}{-8} =1/4 $

See similar equations:

| -8x-4=-5x-21 | | -1-3x(1-x)=0 | | 5x+6/3x-9=0 | | 28a-7=15 | | 3x-17=x+6 | | 5(2x+9)=2(x+11)=3(3x+4)+46 | | 4(2f+9)-3f=0 | | x=-2-3 | | 4+5x+3x+2= | | 2y-3=-3y-8 | | P-2=t+11 | | 3y+8=4y-1 | | 2x+40=4x+28 | | 5(2x+4)=(x-3) | | 46-18=7a | | 89-4y=49 | | 4x+16=2x+28 | | 2x+16=13-x | | 6-4x=21+x | | 52x–6=4x+6 | | 7y=–3y | | 7y=8–3y | | 2x+(x+9)2=2(x+1) | | 5y(6-2y)=-(19-18y) | | 2x+(x+9)×2=2×(x+1) | | 4x(x+8)=-24 | | x+6=71 | | -18+5x=12+2x | | 98-y=16 | | 7x/2-3x/4=21/3 | | 5b+6=41 | | 6-8x=-3x-9 |

Equations solver categories